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Waste electrical and electronic equipment (or e-waste) is one of the fastest growing waste streams,
which encompasses a wide and increasing spectrum of products. Accurate estimation of e-waste gener-
ation is difficult, mainly due to lack of high quality data referred to market and socio-economic dynamics.
This paper addresses how to enhance e-waste estimates by providing techniques to increase data quality.
An advanced, flexible and multivariate Input–Output Analysis (IOA) method is proposed. It links all three
pillars in IOA (product sales, stock and lifespan profiles) to construct mathematical relationships between
various data points. By applying this method, the data consolidation steps can generate more accurate
time-series datasets from available data pool. This can consequently increase the reliability of e-waste
estimates compared to the approach without data processing. A case study in the Netherlands is used
to apply the advanced IOA model. As a result, for the first time ever, complete datasets of all three vari-
ables for estimating all types of e-waste have been obtained. The result of this study also demonstrates
significant disparity between various estimation models, arising from the use of data under different con-
ditions. It shows the importance of applying multivariate approach and multiple sources to improve data
quality for modelling, specifically using appropriate time-varying lifespan parameters. Following the case
study, a roadmap with a procedural guideline is provided to enhance e-waste estimation studies.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Waste electrical and electronic equipment (WEEE or e-waste) is
one of the fastest growing solid waste streams. Continuous techno-
logical innovations, combined with rapid growth in consumer de-
mand lead to a rapid proliferation of electronic devices (Dwivedy
and Mittal, 2010). As a result, large quantities of e-waste have been
generated. This phenomenon is accelerated by decreasing lifespans
and increasing range of new product types. For instance, there are
more than 900 types of electrical and electronic equipment identi-
fied in developed world (Huisman et al., 2012). If handled improp-
erly, the substantial amounts of valuable and hazardous materials
in the e-waste stream may result in a loss of resources and sub-
stantial damage to the environment.

Current estimates predict close to 50 million tons of e-waste
worldwide per year (StEP Initiative, 2010; Huisman, 2012). A more
precise assessment of the current and future e-waste generation is
needed to quantify its resource potential (as ‘‘urban mining’’) and
toxic content. The results of such research provide a baseline to
optimise planning of e-waste policies, management of take-back
systems, and monitoring of legislative implementation (Beigl
et al., 2008). In February 2012, the EU adopted an updated WEEE
collection target to be achieved in 2019. The target is 65% of the
average of electrical and electronic equipment (EEE) sold in the
three preceding years or alternatively 85% of e-waste generated
(European Commission, 2012). However, no uniform methodology
has been formulated to estimate national e-waste quantities which
will be critical for the implementation of these targets. As a conse-
quence, there is a clear need for accurate quantification of e-waste
streams.

A number of evaluation methods are available for quantifying e-
waste generation (Walk, 2004; Yu et al., 2010; Chung, 2011; Araújo
et al., 2012; Lau et al., 2012). Generally, they can be classified into
four groups: disposal related analysis, time series analysis (projec-
tions), factor models (using determinant factors for correlation)
(Huisman et al., 2008; Huisman, 2010) and Input–Output Analysis
(Walk, 2004; Beigl et al., 2008; Chung, 2011). Disposal related
analysis uses e-waste figures obtained from collection channels,
treatment facilities and disposal sites. It usually requires empirical
data from parallel disposal streams to estimate the overall
generation. Projection models forecast the trend of e-waste
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generation by extrapolating historical data into the future. It can be
also applied to fill in the gap of past unknown years from available
datasets. Factor models are based on hypothesized causal relation-
ships between exogenous factors like population size and income
level versus e-waste generation (Beigl et al., 2003, 2008). It is the
least explored method so far due to complex anthropological ef-
fects, high uncertainty in long-term patterns and considerable
requirement for advanced modelling techniques. Input–Output
Analysis is so far the most frequently used method with multiple
model variations, which has been applied to estimate e-waste gen-
eration in many regional and country studies (He et al., 2006; Kang
and Schoenung, 2006; Peralta and Fontanos, 2006; Yang et al.,
2008; Robinson, 2009; TemaNord, 2009; Dwivedy and Mittal,
2010; Chung et al., 2011; Zhang et al., 2011; Araújo et al., 2012;
Polák and Drápalová, 2012. This method quantitatively evaluates
the sources, pathways and final sinks of material flows. The present
paper further explores the application of IOA models with a spe-
cific focus on the data quality of model variables.

In current literature, the problem of low data quality is often
underestimated or not fully understood yet. Data has often been
considered as an external problem independent from the mathe-
matical modelling. However, the accuracy of non-validated results
can be limited due to low data quality, insufficient validation of
model parameters, unrealistic assumptions and oversimplification
of market conditions (Beigl et al., 2008; Murakami et al., 2010;
Oguchi et al., 2010). Therefore, reporting results with little review
on validity, completeness and reliability of data can lead to very
inaccurate estimations.

Data qualities vary from diverse sources, and they are often
inconsistent with each other. Product sales and stock data are usu-
ally sporadic and incomplete for all historical years (EEA, 2003).
Product lifespan data are often roughly obtained without compre-
hensive consumer survey and further validation. In meantime, rap-
idly changing market conditions and the introduction of new
product types demand dynamic modelling of actual flows. How-
ever, product weights and lifespan profiles are often considered
to be constant over time in existing studies, and complete time ser-
ies data are rarely available (Babbitt et al., 2009). Therefore, these
issues regarding data quality have created considerable difficulties
for accurate estimation.

This article will systematically address how to improve e-waste
estimates and provide solutions to the challenges. These include:
(a) to propose an advanced Input–Output Analysis under a multi-
variate approach; (b) to highlight data consolidation steps to im-
prove the qualities of input data; and (c) to present a procedural
guideline for advanced estimation.
2. Advanced Input–Output Analysis

In a socio-economic system, products flow into the society
(sales), then accumulate in the built environment (stock); when
reaching end of life after a certain period (lifespan), they flow out
as e-waste (van der Voet et al., 2002; Bergbäck and Lohm, 2008).
IOA models quantitatively describe the dynamics, magnitude and
interconnection of product sales, stocks and lifespans (Brunner
and Rechberger, 2004; Walk, 2004; Gregory et al., 2009; Lau
et al., 2012). This section mainly explores the mathematical rela-
tions among these three variables for e-waste estimates.
2.1. Variations of existing Input–Output Analysis

Table 1 summarises the use of IOA variables on estimating e-
waste generation in existing literature. It shows that commonly
applied methods use two variables (from the three above-defined
variables: sales, stock and lifespan) for computation.
2.1.1. Model A. Time Step model
In Time Step model, the change of stock within a period in a sys-

tem equals the difference between the total inflows and outflows.
The method is represented by:

WðnÞ ¼ POMðnÞ � ½SðnÞ � Sðn� 1Þ� ð1Þ

where W(n) is the e-waste generation in evaluation year n, POM(n)
is the quantity of product sales in year n, while S(n) and S(n � 1) are
the quantities of appliances in stock for sequential years n and n � 1
respectively (Araújo et al., 2012). The method entails two types of
data input: sales in the evaluation year and stock data for two con-
secutive years.

2.1.2. Model B. Market Supply models
Market Supply models estimate e-waste generation from prod-

uct sales in all historical years with their respective obsolescence
rates in evaluation year (Streicher-Porte et al., 2005; Jain and Sa-
reen, 2006; Oguchi et al., 2008; Dwivedy and Mittal, 2010). The
method is represented by:

WðnÞ ¼
Xn

t¼t0

POMðtÞ � LðpÞðt;nÞ ð2Þ

where POM(t) is the product sales in the historical year t; t0 is the
initial year that product has ever been put on the market; L(p)(t, n)
is the discard-based lifespan profile for the batch of products sold
in historical year t, which reflects its probabilistic obsolescence rate
in evaluation year n (discarded equipment in percentage to total
sales in year t) (Melo, 1999; Murakami et al., 2010; Oguchi et al.,
2010).

Instead of using continuous lifespan distribution of a prod-
uct, the Carnegie Mellon Method applies discrete average life-
span for different lifecycle stages (Walk, 2004; Peralta and
Fontanos, 2006; Steubing et al., 2010). This method allocates
product sales in phases such as reuse, household stock, recy-
cling or landfill, and each phase has different time delays. For
accurate estimate, it demands comprehensive analysis of mate-
rial flows and their representative time delays in all product
lifecycle stages.

A simplified version of the Market Supply model is the Simple
Delay model, in which e-waste generation in the evaluation year
is seen as a pure delay from the sales in one historical year:

WðnÞ ¼ POMðn� Lðav:ÞÞ ð3Þ

In this formula, L(av.) is the average lifespan which represents
the most possible time when the product becomes obsolete. It
can be calculated from the mean value of the lifespan distribution
function.

In a completely saturated market with stable population, the
quantity of new products sales equals e-waste output at the same
time, which is named as the ‘‘Complete Saturation Method’’ (Walk,
2004). However, the use of these two simplified methods can only
be justified for saturated market (van der Voet et al., 2002; UNEP,
2007; Lau et al., 2012).

2.1.3. Model C. Stock and Lifespan model
In Stock and Lifespan model, combining time-series stock data

with lifespan distributions of products can also estimate e-waste
generation (Binder et al., 2001; Müller et al., 2009; Walk, 2009).
It can be calculated according to Eq. (5) with Eq. (4) being the ini-
tial condition.

For the initial year t0:

Wðt0Þ ¼ POMðt0Þ � Sðt0Þ ¼ POMðt0Þ � LðpÞðt0; t0Þ ð4Þ

For the evaluation year n:



Table 1
Required variables and datasets for e-waste estimates in existing IOA models.

Estimation models Variables and data requirement Key references

Sales
cont.⁄ Dis.⁄

Stock
cont. Dis.

Lifespan age
distribution

Average
lifespan

A. Time Step model
p p

Oguchi et al. (2008), Yu et al. (2010), Araújo et al. (2012)
B-i. Market Supply model

(Distribution Delay)

p p
Melo (1999), Yang et al. (2008), TemaNord (2009)

B-ii. Market Supply model
(Simple Delay)

p p
van der Voet et al. (2002)

B-iii. Market Supply model
(Carnegie Mellon method)

p p
Kang and Schoenung (2006), Peralta and Fontanos (2006), Dwivedy
and Mittal (2010), Steubing et al. (2010)

C. Stock and Lifespan model
p p

Müller et al. (2009), Walk (2009), Zhang et al. (2011)
D. Leaching model

p p
van der Voet et al. (2002), Robinson (2009), Chung et al. (2011),
Araújo et al. (2012)

Note: ‘‘Cont.’’ means that continuous datasets in the current and all historical years are required for calculation; ‘‘Dis’’ means that discrete data (mainly in the current
evaluation year) are sufficient for calculation.
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WðnÞ ¼ POMðnÞ � S½ðnÞ � Sðn� 1Þ� ¼
Xn

t¼t0

POMðtÞ � LðpÞðt;nÞ ð5Þ
2.1.4. Model D. Leaching model
In a saturated market, sales of new products and the age distri-

bution of appliances in stock are no longer changing dramatically
(van der Voet et al., 2002). The ‘‘leaching model’’ calculates the
e-waste generation as a fixed percentage of the total stock divided
by the average product lifespan (van der Voet et al., 2002; Robin-
son, 2009; Chung et al., 2011; Araújo et al., 2012):

WðnÞ ¼ SðnÞ=Lðav:Þ ð6Þ

This model requires little data input therefore is convenient
when data is extremely scarce. However, the model is not suitable
for all market types due to oversimplification and loss of dynamic
elements compared to the actual situation. It can only be used for
products with a relatively short lifespan in a saturated market (van
der Voet et al., 2002; Walk, 2009).

2.2. Multivariate analysis: Sales-Stock-Lifespan model

In various e-waste country studies, the applications of these IOA
models in e-waste estimates are rather straightforward (He et al.,
2006; Yang et al., 2008; Robinson, 2009; Dwivedy and Mittal,
2010; Chung et al., 2011; Araújo et al., 2012; Polák and Drápalová,
2012). The common approach is to select a corresponding estima-
tion method based on available data and the use of only two vari-
ables from the three pillars. As a consequence, the estimated result
is potentially extremely sensitive towards their data qualities,
especially in case of an assumed or non-validated lifespan profile
(Jain and Sareen, 2006). Oversimplification of methods and poten-
tial data uncertainties in variables (such as lifespan distributions)
can substantially decrease the reliability of the estimated results.

In reality, there are often available data from the unused vari-
able or data points, which can provide additional information to
support the calculation. When multiple data points are available
or can be collected for all three IOA pillars, it is possible to apply
a multivariate IOA called the ‘‘Sales-Stock-Lifespan model’’ (re-
ferred as Model E).

Fig. 1 illustrates the presence and relationship between these
IOA variables and data points. The consuming mechanism of elec-
tronic products in societies can be explained as the inflows, stock
and outflows of a funnel. Information can be extracted from each
data point for any historical year: sales, stock size and stock age
composition, lifespan profile, and disposal age composition of
e-waste. Relationship between these data points complies with
the conservation of mass, IOA rules and algorithms provided in
the following. These mathematical and logical functions are instru-
mental to facilitate filling the data gaps and checking data quality.

For product sales in a specific year, it can be calculated by Eq.
(1), when e-waste generation in the same year and stock data in
two neighbouring years are known; or by Eq. (2), when the e-waste
generations and lifespan profiles are known for all historical years.

For the stock age composition in the evaluation year n, it can be
calculated from historical sales and lifespan profiles:

Sðt;nÞ ¼ POMðtÞ � ½1� LðcÞðt;nÞ� ð7Þ

where S(t, n) is the number of appliances in stock in evaluation year
n, which was originally sold in year t; L(c)(t, n) is the cumulative life-
span distribution from year t to n, which reflects the total obsoles-
cence rates of products (sold in year t) during this period.

In addition, the total product stock size in any historical year t
can be calculated by:

SðtÞ ¼
Xt

t0¼t0

POMðtÞ � ½1� LðcÞðt0; tÞ� ð8Þ

For the disposal age composition of e-waste in the evaluation
year, it can be calculated from historical sales and lifespan profiles:

Wðt;nÞ ¼ POMðtÞ � LðpÞðt;nÞ ð9Þ

Lifespan of a product differs between individual owners and it
takes the form of a probability distribution for a given population
(Murakami et al., 2010). Owing to social and technical develop-
ment, lifespan of products is time-dependent, so parameters of life-
span distributions have to be modelled corresponding to each
historical sales year. In the present paper, the Weibull distribution
function is applied to model the lifespan profile. Compared to other
statistical distributions (such as Normal, Lognormal, or Beta distri-
butions), it has been verified that the Weibull function has the
advantages of higher analytical tractability and produces the best
fits of the lifespans for most products (Melo, 1999; Walk, 2009;
TemaNord, 2009). The Weibull distribution is defined by a time-
varying shape parameter a(t) and a scale parameter b(t) (van
Schaik and Reuter, 2004; Polák and Drápalová, 2012):

LðpÞðt;nÞ ¼ aðtÞ
bðtÞaðtÞ

ðn� tÞaðtÞ�1e�½ðn�tÞ=bðtÞ�aðtÞ ð10Þ

Simulation of lifespan distribution can apply non-linear regres-
sion analysis for curve fitting, in order to determine best-fit data
for these two parameters. For lifespan distribution in each



Fig. 1. Multiple variables and data points applied in the Sales-Stock-Lifespan model to enhance e-waste estimates.
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historical year, at least two data points are required to calculate the
parameters a and b. For instance, in order to determine a(1990)
and b(1990) for products sold in 1990, their probabilistic obsoles-
cent rates in two years have to be obtained (such as
L(p)(1990, 2011) and L(p)(1990, 2012)). In addition, numeric and
logical constraints can facilitate the process of curve fitting from
known data. For instance, the accumulative obsolescence rates
for one sales year cannot surpass 100%.

The probabilistic obsolescent rate L(p)(t, n) can be obtained from
consumer surveys or calculated from Eq. (2) and Eq. (5), if corre-
sponding sales, stock and e-waste generation data are available.
Alternatively, the disposal age composition in e-waste sorting
analysis can also be applied to retrieve it for specific year:

pðn� tÞ ¼Wðt;nÞ
WðnÞ ¼

POMðtÞ � LðpÞðt;nÞ
Xn

t¼t0

POMðtÞ � LðpÞðt; nÞ
ð11Þ

where p(n � t) is the percentage of the e-waste with the age of
(n � t) years proportional to the total sampled e-waste; W(t, n) is
the amount of e-waste in evaluation year n generated by the sales
of products in year t.

Sometimes, it is difficult to calculate the overall e-waste gener-
ation in evaluation year according to Eq. (11). Therefore, the ratio
of disposal age compositions between two random years can also
help to determine the lifespan parameters:

pðn� tÞ
pðn�mÞ ¼

Wðt;nÞ
Wðm;nÞ ¼

POMðtÞ � LðpÞðt;nÞ
POMðmÞ � LðpÞðm;nÞ

ð12Þ

where t and m are any two historical years before the evaluation
year n.

During consumer survey, it is also possible to obtain the age
composition of products in stock. Therefore, this type of data can
also provide extra information for the lifespan distribution in dif-
ferent historical years. It is presented in the following formula:

Sðt;nÞ
Sðm;nÞ ¼

POMðtÞ � ½1� LðcÞðt; nÞ�
POMðmÞ � ½1� LðcÞðm;nÞ�

ð13Þ

where S(t, n) and S(m, n) are the quantity or percentage of products
in stock, which was originally sold in years t and m respectively.
To summarise the analysis so far, each data point (as presented
in Fig. 1) not only carries information about its own representing
variable, but also contains potential indication for other variables.
By applying all the formulas presented in this section, additional or
alternative data can be extracted from known data. This can enable
the maximal capture of all available data to improve the estima-
tion, without losing their potential implications. Therefore, the
Sales-Stock-Lifespan model adopts multivariate analysis by involv-
ing all three variables in IOAs and multiple data points to estimate
e-waste generation.

From the aspect of mathematics, these three variables are
equally important or functional. However, when facing a collection
of data from different sources in real life calculation, their qualities
are usually not equal. Some data points like sales and stock size
may have an advantage than other data points because they are
easier to measure or have lower level of uncertainty. The following
section will further explain the procedure to apply the Sales-Stock-
Lifespan model by taking data quality into consideration.
3. Improvement of data quality

There is a variety of data sources for all three variables in IOA,
and their qualities vary greatly. This section aims to provide the
procedure of applying Sales-Stock-Lifespan model, by constructing
a most plausible dataset for more precise estimates.

3.1. Data sources for variables

For product sales, data can be obtained from national statistics
on domestic commodity production and import/export figures.
Alternatively, sales stemming from marketing surveys and pro-
ducer foundations can also be used. The latter is usually difficult
to obtain due to confidentiality and is often known to be incom-
plete or too aggregated.

The stock size includes products both in use and in ‘‘hiberna-
tion’’ (or ‘‘dead storage’’). Its quantity can be obtained from con-
sumer and business surveys by requesting the number of
products currently staying in the built environment. The con-
ducted survey needs to be representative for demographic, geo-
graphic and social-economic factors. In some cases, the age
composition of products in stock can be obtained from detailed
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surveys. According to Eq. (7), the stock age distribution can provide
extra and very advantageous information for both sales and life-
span profile for specific historical year(s).

Product lifespan as used in this paper covers the interval be-
tween the shipment of new product and the end point when dis-
carded out of the households/enterprises. It differs with the
commonly used ‘‘service time’’ as it includes the periods of both
use and hibernation (Müller, 2006; Murakami et al., 2010). The sta-
tistical distribution of lifespans can be derived from four sources:
from consumer surveys describing the age of discarded products;
also from surveys, the present age composition of products in
stock; stock levels at the beginning and the end of a certain period;
and from sorting and sampling of the waste streams (Murakami
et al., 2010; Oguchi et al., 2010; Polák and Drápalová, 2012).

It is intrinsically challenging to accurately portray the actual
distribution of lifespan in relatively simple statistical functions. Er-
rors can be introduced if the statistical function is oversimplified,
for instance when only mean value or time-invariant lifespan dis-
tribution is applied for all years. Compared to sales and stock, time-
dependent lifespan distribution has a higher degree of freedom as
shown in Eq. (10). As a result, multiple methods or data points
need to be in place to improve the quality of curve fitting. In con-
sumer surveys, it has been observed that the obtained lifespan data
(from asking respondents about the age of their disposed products)
is usually more uncertain than the obtained age distribution of the
products in stock (Magalini et al., 2012). This is normally due to the
sample size: there are more products in stock than being removed
from a household. Therefore, stock age distribution (in a specific
year) fulfils an important role to check the fitted parameters of
the disposal lifespan curve (Eq. (7) and Eq. (13)).

In addition, the average weight of product is an important var-
iable to link product quantities (units or pieces) to their weight
(metric tons). The data can either stem from sorting analysis in
recycling facilities or surveys from producers, processed by using
standard deviation of a group of product weights. Time-series data
for product weights over time, for instance via sampling of the re-
turn stream, is also essential to measure the dynamics in product
design.

3.2. Data quality

Data obtained from different sources and stakeholders might
have distinct scopes and qualities. Therefore, efforts need to be
spent on understanding and cleansing unrealistic data and con-
structing continuous dataset by filling data gaps or mismatches.
In many cases, the scope of EEE related data is not uniform or clear.
For instance, unspecified data about computers can include both
desktop computers and laptop computers. Sometimes, such data
also include servers, work stations, netbooks, tablets and even
peripherals. Sales figures from producer registers are frequently
incomplete or based on assumed or outdated average product
weights. Non-reported extrapolations within input data need to
be understood.

For these reasons, data need to be acquired via statistically ro-
bust sampling method and pre-checked for errors. Errors need to
be corrected for model input such as: using wrong units, unrealis-
tic average product weights, and the mixing of components with
products, of household and professional equipment, of new and
second hand goods (Troschinetz and Mihelcic, 2009). As an impor-
tant source for sales and lifespans, the use of market survey data
should be checked regarding coverage, sampling size and demo-
graphic conditions in order to be representative for a larger region
(Murakami et al., 2010). Also concerns about structural bias like
the so-called telescope effect from respondents is relevant, and
would potentially bring uncertainty to the disposal based lifespan
distribution (Morwitz, 1997). For e-waste specifically, data
obtained from sorting analysis requires careful examination. Due
to the exclusion of data from other end-of-life streams such as
informal recycling, illegal export or landfill, the sampled return
streams frequently consist of the least valuable and oldest equip-
ment and are thus not representative for the entire stream.

Data quality mainly reflects the completeness, representative-
ness, accuracy and uncertainty of the collected data. During mod-
elling of e-waste generation, clear documentation of data quality
is preferable. It can be evaluated qualitatively by above mentioned
aspects such as data scope (consistent definition of referenced
data, products type covered, target company/group/region), acqui-
sition method (statistical measurement, assumptions or unquali-
fied sources), and time coverage (availability of historical data).
Furthermore, data quality can be also assessed in the following
quantitative attributes: population sizes, confidence intervals,
standard deviations, sample sizes, (the procedure for) removing
erroneous data points. A checklist for evaluating data quality in
e-waste estimation is provided in Table S1 of the Supplementary
Data (Appendix 1). As an advanced analysis, a weighting scheme
or indicator system can be established to evaluate the data quality.
The overall score can be used to either compare alternative data
sources for the same data point or between different variables.

3.3. Process data by applying Sales-Stock-Lifespan model

After the data quality has been understood and assessed for all
variables, the Sales-Stock-Lifespan model can be used to carry out a
multivariate analysis based on available data points. The main pur-
pose is to construct reliable and continuous datasets for model cal-
culation, by either filling the data gap or finding the most reliable
data source. The approach is to apply the variable(s) with higher
data quality to validate and consolidate the variable with lower
data quality. For instance, in case data of both lifespan and stock
are available for e-waste estimates. After evaluating the data qual-
ities of both these two variables, if lifespan distributions are found
out to unreliable than stock data, then available stock size and ini-
tial stock age composition can consolidate lifespan data. For calcu-
lation among variables, it can be operated by applying the
mathematical functions from Eq. (1) to Eq. (13). Through this pro-
cess, structural or data errors of less reliable variable become visi-
ble by cross-checking with other variables and data points.

In addition to the provided formulas, empirical and logical con-
straints are also functional to further consolidate data. An example
constraint is market saturation levels, such as a maximum of one
washing machine per household. It can also include external refer-
ence points like the number of cell phones in stock (use) versus the
number of subscriptions. Another important source of constraint
comes from monitoring the waste and export streams. For exam-
ple, the identified quantity of products in the total waste streams
cannot exceed the model outcomes; for typical replacement prod-
ucts like washing machines, it is not likely that there is more dis-
carding of old products than sales of new products in a given
year. Therefore, by setting a dedicated data quality weighting
scheme and initial values from available data, the Sales-Stock-Life-
span model can generate a more continuous dataset by closing the
data gaps and prioritization of data with higher quality when there
are multiple sources present.

After this step, the Time Step Model can be applied directly to
calculate e-waste generation, if reliable sales and stock data are ob-
tained. The Market Supply model (distribution delay) can be ap-
plied, if reliable sales and lifespan distribution are retrieved from
the analysis. There is a fundamental difference between the direct
application of these two-variable models and the advanced model,
despite using the same formula to calculate e-waste generation
eventually. The advanced IOA model improves the quality of input
data through data consolidation procedure by multivariate
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analysis; while the preparation of data has not been considered by
Models A–D.

Through these steps of data consolidation and multivariate
analysis, the accuracy of the model output is significantly im-
proved, compared with other straightforward approaches. The fol-
lowing section will practice the Sales-Stock-Lifespan model
through an empirical study from the Netherlands.
4. Case study for Dutch e-waste flows

In 2011, a national study was conducted to determine the gen-
eration, collection, treatment and export of all types of e-waste in
the Netherlands (Huisman et al., 2012). For most product catego-
ries, multiple data sources were obtained for EEE sales, stock, life-
span and average weights. These include national statistics,
consumer surveys, compliance schemes, producers, industrial
associations, recyclers and exporters. These data are applied to cal-
culate the e-waste generation in the Netherlands. The quality of
data compared to many other studies is regarded to be very high.
In this empirical study, all IOA models presented in Section 2 have
been examined under the same dataset, in order to compare the re-
sults between models.
4.1. Data

In order to capture all the EEE present in the Dutch society, a
comprehensive classification of EEE has been developed to divide
all possible EEE into 55 product categories (Wang et al., 2012). It
was established under three essential criteria: product type, waste
management and legislative relevancy. An important source facili-
tating the categorisation was the international coding system of
goods. Information from the European Prodcom (Production Statis-
tics Database for the domestic statistics on the production of man-
ufactured goods) and CN (Combined Nomenclature Database for
the external trade statistics of goods) codes was compiled to cate-
gorise all the EEE. The EEE related codes were collected for the per-
iod 1993–2011 from the Eurostat Ramon database (Eurostat, 2011).

Historical product sales were obtained from three data sources.
The commodity registrations from Statistics Netherlands have
been compiled covering all 55 EEE categories between 1995 and
2010. Sales of product were calculated from the annual quantity
of domestic production (from Prodcom) plus the import (from
CN) and minus the export (from CN) at the national level. For each
product category, detailed scrutiny of the micro-data was con-
ducted, and error-resolving was applied to remove highly unlikely
records of domestic sales, import and export. The approach was to
check the consistency among the quantity, weight and value per
product shipment, and then the identified abnormal record was
corrected. Sales data for recent years were also obtained from
the Wecycle producer registers and from Agency Netherlands for
individually notifying companies. In addition, complementary data
from retail panel and branch organizations were used.

Lifespan distribution and stock levels of various EEE in the
Netherlands were primarily derived from extensive market sur-
veys. Lifespan profiles were calculated from two data sources:
the stock data including stock size and age distribution; and the
age composition of products discarded from households. To obtain
these data, a national survey was conducted towards 5200 repre-
sentative Dutch households for the purchasing, possession and dis-
posal of domestic appliances (63 types), consumer electronics (18
types) and IT products (5 types) during 2006 and 2007 (Hendrik-
sen, 2007). In 2008, 3000 representative Dutch households were
interviewed for discharge lamps (Hendriksen, 2009). Also the stock
levels of EEE in small and medium sized enterprises were surveyed
(Hendriksen, 2010). In these surveys, face to face visits were con-
ducted to validate and correct online responses. Additional data
from complementary end-of-life streams and sorting analysis in
the Dutch e-waste recycling facilities in 2011 were applied to val-
idate the survey results. Based on the Weibull distribution func-
tion, first year failure rates were incorporated when abrupt
discarding behaviours were observed for the first year of product
purchase (e.g. guarantee claims and consumer dislike of products).
Therefore, a compound lifespan distribution has been applied for
better capturing the actual disposal behaviours: increased defects
risk for the first year after purchase, described by a constant
parameter added to the first year obsolescence rate of the Weibull
distribution; other years still with the original Weibull distribution
(TemaNord, 2009). In meantime, except for lamps, it is assumed
that lifespan profile for business use is similar for consumers in
this case study.

Average weight per EEE category was acquired through the
sorting analysis and the Wecycle producer register, while literature
data has been included for comparisons as well. The obtained raw
data have been processed by analysing their standard deviations
and confidence intervals to reflect the weight distribution over
time.
4.2. Modelling process and results

Based on Section 2.2 and fed with the data described in 4.1, the
Sales-Stock-Lifespan model has been developed. The model was
constructed in MS Excel to allow for flexible application of Micro-
soft Excel Solver (Frontline System Inc., 2012) for non-linear
regression analysis per product category. Data quality was qualita-
tively evaluated based on data availability for the respective years
for all three pillars, together with the accuracy of fit (R-squared
values) for the lifespan profiles. Dependent on the data quality of
each pillar, the solver was applied to determine the parameters
for variables, correct data errors and complete the missing data
for model input. The variables with higher data quality were used
to validate and consolidate the variable with lower data quality
consecutively.

Regarding the data quality in the Dutch study, the sales of prod-
ucts had the most complete and reliable time-series dataset. Then
the total quantity and age composition of products in stock were
also very reliable for year 2006. In addition, the age composition
of the discarded e-waste in 2006 was also available but required
further verification. In consideration of the data quality hierarchy
in this case study, as a starting point, the Weibull parameters were
obtained by curve fitting from the disposal age composition W(t, n)
for the investigated years in consumer surveys; then stock age
composition S(t, n) was used as a supplementary and a more reli-
able source to determine dynamic lifespan parameters for all his-
torical years, by applying Eq. (13). The detailed process of
modelling the time-varying lifespan parameters are provided as a
tutorial in Supplementary Data (Appendix 2). After acquiring the
lifespan distributions, data gaps of historical stock were then filled
in by combining sales and lifespan profiles under Eq. (9), with the
minimal deviation of the results compared to all original data
points.

After continuous and reliable dataset were obtained and consol-
idated for all historical sales and lifespan profiles, e-waste genera-
tion was calculated by Eq. (2). Resulting data of sales, stock,
lifespan, average weight, e-waste generation are provided in Ta-
ble 2 for selected years.
5. Significance of model selection and data quality

In order to understand the influence of lower data quality in tra-
ditional IOA models, a selection of representative EEE is used from



Table 2
Classification of EEE with their sales, stock, average weights, lifespan distributions and e-waste generation in the Netherlands (in selected years).

Primary EEE
category

Sub-category Primary
WEEE
collection
category

Average weight
(kg/piece)

Lifespan distribution
(Weibull)

EEE sales
2010
(kg/inh.)

Model output

Sub-key Description 1995 2005 1995 2005 EEE in
stock 2010
(kg/inh)

WEEE
Generated
2010
(kg/inh)

a shape b scale a shape b scale

Large household
appliances (LHA)

1-01 Prof. Heating and
ventilation

F. PROF 83.7 83.7 1.8 16.2 1.8 15.8 0.44 5.24 0.37

1-02 Dishwashers A. LHA 49.4 45.5 1.7 13.5 1.6 13.1 1.05 11.26 0.99
1-03 Kitchen (furnaces,

ovens)
A. LHA 41.5 45.6 2.7 19.4 2.5 18.0 0.66 8.68 0.47

1-04 Washing machines A. LHA 69.1 71.4 2.3 14.6 2.2 13.9 2.93 32.88 2.68
1-05 Washing dryers and

centrifuges
A. LHA 37.7 43.2 2.7 16.9 2.6 16.5 0.89 11.36 0.69

1-06 Room heating and
ventilation

A. LHA 9.6 9.9 2.0 13.5 2.0 13.5 0.35 3.68 0.30

1-07 Sun beds and tanning A. LHA 69.1 71.4 1.5 11.4 1.5 11.2 0.02 1.06 0.14
1-08 Fridges (for food,

wine etc.)
B. C&F 33.1 38.2 2.3 16.9 2.2 16.5 1.39 16.28 1.01

1-09 Freezers (for food,
ice, etc.)

B. C&F 43.6 43.9 2.7 24.0 2.6 23.2 0.67 12.94 0.62

1-10 Combined fridges
and freezers

B. C&F 54.3 64.4 2.3 16.9 2.2 16.5 1.11 12.81 0.78

1-11 Air conditioners B. C&F 50.0 35.0 2.8 12.6 2.8 12.3 0.04 1.24 0.13
1-12 C&F Other (Cooling

and Freezing)
B. C&F 9.8 9.8 2.5 14.0 2.4 13.6 0.08 0.85 0.08

1-13 Prof. C&F F. PROF 120.0 137.9 2.5 21.0 2.5 20.6 0.82 10.88 0.40
1-14 Microwaves C. SHA 15.9 17.5 1.0 17.8 0.8 14.7 0.63 5.56 0.48

Small household
appliances (SHA)

2-01 SHA (iron, scale etc.) C. SHA 1.3 1.2 1.4 9.8 1.3 9.4 0.63 5.01 0.65

2-02 Food processing C. SHA 2.9 3.1 1.6 14.7 1.3 12.3 1.33 11.63 1.10
2-03 Hot water (coffee, tea

etc.)
C. SHA 1.9 1.9 2.0 9.1 1.8 7.9 0.53 2.91 0.45

2-04 Vacuum cleaners C. SHA 4.8 5.5 1.5 10.5 1.5 10.3 0.54 3.98 0.44
2-05 Personal care C. SHA 0.6 0.6 1.4 11.6 1.3 10.8 0.13 1.15 0.13

IT and telecom
equipment (IT)

3-01 Small IT and
accessories

D. IT 0.6 0.5 1.3 6.1 1.3 5.9 0.47 2.46 0.51

3-02 Desktop PC (excl.
monitor)

D. IT 10.4 9.3 2.2 10.1 2.1 9.6 0.64 6.33 0.83

3-03 Laptop PC (incl.
netbook, tablet)

D. IT 4.6 3.7 1.6 5.6 1.5 5.2 0.43 1.36 0.31

3-04 Printing and imaging D. IT 7.9 7.3 2.0 11.8 1.7 10.1 0.86 5.86 0.67
3-05 Telephones and

equipment
D. IT 0.8 0.6 2.3 7.4 2.1 6.5 0.06 0.31 0.07

3-06 Mobile phones D. IT 0.12 0.10 0.8 7.9 0.7 7.6 0.02 0.13 0.02
3-07 Prof. IT (server,

router etc.)
G. PROF/D. IT 36.0 36.0 1.5 8.0 1.5 7.8 0.76 4.17 0.63

3-08 CRT monitors
(cathode ray tube)

E1. CRT 14.6 19.4 2.4 9.5 2.2 8.5 - 4.32 1.28

3-09 FPD monitors (flat
panel display)

E2. FPD 5.0 6.5 2.7 8.0 2.5 7.5 0.76 4.75 0.57

Consumer equipment
(CE)

4-01 Small CE and
accessories

C. SHA 0.4 0.4 1.8 13.5 1.4 10.2 0.15 0.93 0.11

4-02 Portable audio and
video

C. SHA 0.4 0.3 0.8 8.2 0.8 8.0 0.07 0.57 0.07

4-03 Radio and Hifi
components

C. SHA 3.6 2.6 2.1 15.8 2.1 15.6 0.63 7.21 0.51

4-04 Video and projection C. SHA 4.1 3.3 1.7 10.7 1.7 10.5 0.33 4.37 0.56
4-05 Speakers C. SHA 3.1 2.4 1.5 11.0 1.5 10.8 0.31 3.04 0.33
4-06 Camera C. SHA/D. IT 1.1 0.5 1.5 8.6 1.4 8.2 0.06 0.49 0.07
4-07 CRT TVs (cathode ray

tube)
E1. CRT 24.2 31.8 2.2 14.5 2.0 12.6 - 13.68 1.76

4-08 FPD TVs (flat panel
display)

E2. FPD 7.8 12.6 2.1 12.0 2.1 12.0 1.71 7.13 0.28

Lighting equipment 5-01 Lamps (others,
Christmas light etc.,
excl. incandescent
lamps)

F. Lamps/C. SHA 0.09 0.09 2.0 12.3 2.0 11.6 0.27 2.33 0.23

5-02 Compact fluorescent
lamps

F. Lamps 0.08 0.08 2.1 9.0 2.1 9.1 0.08 0.44 0.04

(continued on next page)
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Table 2 (continued)

Primary EEE
category

Sub-category Primary
WEEE
collection
category

Average weight
(kg/piece)

Lifespan distribution
(Weibull)

EEE sales
2010
(kg/inh.)

Model output

Sub-key Description 1995 2005 1995 2005 EEE in
stock 2010
(kg/inh)

WEEE
Generated
2010
(kg/inh)

a shape b scale a shape b scale

5-03a Straight tube
fluorescent lamps
(business to
business)

F. Lamps 0.11 0.11 1.3 6.6 1.4 7.2 0.11 0.59 0.12

5-03b Straight tube
fluorescent lamps
(household)

F. Lamps 0.11 0.11 1.9 17.8 1.9 17.8 0.02 0.25 0.01

5-04 Prof. special lamps F. Lamps 0.08 0.08 1.5 8.0 1.2 5.5 0.01 0.03 0.01
5-05 LED lamps F. Lamps 0.08 0.08 N.A. N.A. 2.0 10.9 0.02 0.02 N.A.
5-06 Household

luminaries
F. Lamps 0.5 0.5 2.3 13.5 2.1 13.0 0.60 7.71 0.53

5-07 Prof. luminaries F. Lamps 2.7 2.7 2.2 17.0 2.1 16.6 0.40 1.93 0.31

Electrical and
electronic tools

6-01 Prof. tools (excl. dual
use)

C. SHA 23.2 23.2 2.0 12.0 1.9 11.6 0.16 1.25 0.11

6-02 Small tools
(household)

C. SHA 2.6 2.5 3.0 18.0 2.6 15.7 0.73 8.91 0.58

Toys, leisure and sports
equipment

7-01 Small toys C. SHA 0.25 0.22 1.5 4.9 1.5 4.7 0.05 0.18 0.05

7-02 Game Consoles D. IT 0.5 0.5 1.2 5.8 1.2 5.6 0.11 0.49 0.10
7-03 Large Music and

Exercise
G. PROF 14.5 14.5 2.5 12.0 2.4 11.6 0.06 0.44 0.03

Medical devices 8-01 Small medical
(household)

C. SHA 0.18 0.18 1.5 8.0 1.4 7.6 0.01 0.03 0.00

8-02 Prof. medical G. PROF 67.0 67.0 2.8 20.0 2.6 19.2 0.32 3.11 0.13

Monitoring and control
instruments

9-01 Small monitoring C. SHA 0.24 0.24 1.8 10.0 1.7 9.6 0.14 0.85 0.09

9-02 Prof. monitoring G. PROF 5.5 5.5 2.0 12.0 1.9 11.6 0.11 0.89 0.08

Automatic dispensers 10-1 Prof. dispenser (non-
cooled)

F. PROF 78.5 78.5 2.1 10.5 2.0 10.1 0.33 2.46 0.27

10-2 Prof. dispenser
(cooled)

F. PROF 92.2 92.2 2.1 10.5 2.0 10.1 0.18 1.28 0.13

Total 25.18 259.7 23.33
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the Dutch study. Four products are selected to illustrate different
market types and discarding patterns: washing machine (saturated
replacement market), laptop computer (steadily increasing mar-
ket), Cathode Ray Tubes (CRT) TV (declining/phase-out market)
and flat panel TV (new market).

The modelling results of e-waste generations from Model A to E
are presented in Fig. 2. It generally demonstrates that these models
lead to distinct results for all four appliances. In order to examine
the discrepancies between models, results from Model E (Sales-
Stock-Lifespan Model) are referred as the baseline to enable com-
parison in the present case study (red lines in Fig. 2). Model E is
intrinsically more accurate as it links and validates existing data
from multiple sources for all three independent variables based
on their data quality and respective model algorithms.

The Time Step model (Model A, black lines) simply applies mass
balances and the result contains ‘‘noises’’ from the sales and stock
fluctuations (washing machines in first chart). Confined by avail-
ability in the Dutch case study for historical stock data, the results
of other three appliances do not contain serrated ‘‘noises’’ due to
the use of modelled stock data. In this case, Model E generated a
smooth curve through these dynamic points, and the fluctuating
noises have been evened out by applying fitting of dynamic life-
span profiles. The accuracy of model A highly relies on the quality
of the sales and stock data.

The Market Supply model (Model B) applies dynamic time-
varying lifespan distributions (B-1, orange lines) generates the
closest results to the baseline. If fixed lifespan distribution from
a reference year is used instead (B-2, pink lines; B-3, yellow lines),
it leads to deviation from the baseline for certain years. In the case
of CRT TVs, applying fixed lifespan distribution from 1990 gener-
ates a very similar result with the baseline during 1990–2001,
but it starts to deviate significantly from 2002 onwards with aver-
age relative difference of �6% compared to the baseline. It indi-
cates that applying a fixed lifespan distribution is not the right
modelling choice for phase-out market conditions.

For Stock and Lifespan model (Model C), the accuracy of the cal-
culation primarily relies on the representativeness of the lifespan
distributions applied. The two scenarios selecting marginal life-
span distributions from 1990 (C-1, light green lines) and 2011
(C-2, deep green lines) have shown significant deviation from the
baseline in four product cases. For laptop computers, the scenario
applying fixed lifespan distribution from 1990 has a large differ-
ence compared to the baseline for 2001–2011; while applying
the 2011 lifespan distribution results in a similarly large deviation.
The potential reason of such difference is decreasing sales prices
per unit, desktop replacement and subsequent shortening of life-
spans over time.

Leaching model (Model D) generates the most discrepancy
among all models, by comparing the deviations from the baseline.
For instance, the model (D, blue lines) generates comparable re-
sults with the baseline for washing machine (2003–2011), laptop
computer (1998–2011), CRT TV (1990–2002). In contrast, for
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Fig. 2. Estimated annual waste generation of four representative electrical and electronic equipment in the Netherlands (1990–2011), under ten appraisal scenarios with
different Input–Output Analysis models and lifespan parameters
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unsaturated markets (Flat panel TV), this model shows significant
disparity with the baseline, resulting in a faster growth rate. For
declining markets (CRT TV), the peak of obsolete TVs in three
leaching models appears earlier than the baseline. Therefore,
leaching model is only valid by applying recent average lifespan
data in saturated markets (van der Voet et al., 2002).

The examples demonstrate that different IOA models can lead
to distinct results under different lifespan parameters. The ‘‘Time
Step model’’ can be the most accurate and has a low degree of free-
dom compared to other methods; but it demands reliable sales and
historic stock data. The ‘‘Market Supply model’’ can generate repre-
sentative results if historical sales and time-varying lifespan distri-
butions are available. The ‘‘Stock and Lifespan model’’ can be
applied when continuous historical stocks and lifespan profiles
are available. Improper selection of representative lifespan distri-
bution can introduce significant errors. The ‘‘Leaching Model’’ is
only suitable for products with short lifespan in saturated markets.
The result is again sensitive towards the selected average lifespan.

In conclusion, simple models without processing the data to im-
prove quality can substantially introduce errors for e-waste esti-
mates. Reliability of the sales and stock data, together with the
selection of lifespan profile greatly determines the accuracy of
the estimated e-waste generation. In contrast to sales and stock
size, measurement of lifespan is more complicated, entailing both
extensive surveys and mathematical fitting of the curve parame-
ters. It has been observed in the Dutch study that most products,
except energy saving lamps, have declining average lifespans.
Therefore, this key variable should be monitored for dynamic
changes, especially for non-saturated markets or for new technol-
ogy and subsequent replacements. The accuracy of time series
modelling for lifespan profile can be improved collectively by: bet-
ter modelling techniques (more sophisticated mathematical func-
tions and complementary estimation methods) or more abundant
data with higher quality (representative sampling and alternative
data sources).
6. Discussion and roadmap for constructing estimation scheme

To summarise, a procedural guideline for estimating e-waste
generation under various conditions is presented in Fig. 3. By
checking the data availability of (continuous or discrete) sales,
stock and lifespan profile, the most applicable modelling method
can be selected. Prior to model computation, extra effort should
be spent on improving the data quality and reliability, in order to
reduce the influence from inferior data. Consistency needs to be
checked between different data sources to ensure that no contra-
diction is present. Data quality can be improved by comparing



Fig. 3. Procedural guideline for estimating e-waste generation.
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and validating through multiple sources and data analysis meth-
ods. Additional data gathering for missing IOA pillars or increasing
sampling size can enable the preferred use of time-varying lifespan
profiles over fixed ones. In addition, results can also be validated:
(1) by using different IOA methods in parallel; (2) through cross-
checking from external and independent data of sorting analysis
in end-of-life channels and questionnaire surveys in dwellings;
and (3) by non-IOA methods.

From previous lessons it can be concluded that the IOA model
itself does not entail complicated algorithms or formulas. However,
data uncertainty in the three IOA variables can lead to great devi-
ation of the estimation outcomes with actual flows. It is inherently
difficult to obtain comprehensive and reliable data on EEE and e-
waste. Given aforementioned data quality issues, data analysis
techniques are needed to check errors and consolidate data. Vari-
ables with higher reliability shall be used first for model input.

At the same time, IOA models provide detailed physical infor-
mation of material flows for a system. Its result can be compared
with other models such as time series analysis (check the consis-
tency with historical e-waste data); group comparison (compare
with similar region, country and market); correlation and regres-
sion analysis (coupling with socio-economic factors). IOA models
have a good capability to estimate past and current e-waste gener-
ation, due to the use of actual system flow data. However, its appli-
cation in predicting future quantities will be confined by the
quality of available data for future sales, stock and lifespan. To
achieve optimum planning of future flows, models with stronger
forecasting function shall provide additional support. Due to the
presence of different appraisal objectives and requirements for
accuracy, combining the multivariate IOA model with non-IOA
models can further explore the fundamental influences and even
correlation between demographic and economic factors and e-
waste quantities.
7. Conclusions

Data used in e-waste related research is usually a compilation
of information from a variety of sources. Hence, difference in data
quality needs to be considered for rigorous modelling of e-waste
generation. This study has proposed an advanced IOA method
involving all three variables (sales, stock and lifespan) and best
available data points to prepare better datasets for modelling.
The result from the Dutch case study demonstrates significant dis-
parity between different estimation models, arising from the use of
data under distinct qualities. To enhance e-waste estimates, it is
suggested how additional data gathering and multivariate analysis
can be conducted to improve data quality for more precise
estimation.
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